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In this paper, we discuss and compare split-field, biaxial, and uniaxial perfectly
matched layer (PML) methods for absorbing outgoing vector waves in cylindrical
and spherical coordinates. We first extend Berenger’s split-field formulation into
spherical and cylindrical coordinates in such a way that it maintains all the desir-
able properties it exhibits in rectangular coordinates. Then we discuss the biaxial
and the uniaxial medium PML methods in Cartesian coordinates and extend them
to spherical and cylindrical coordinates. Properties of plane-wave solutions of the
PML methods are analyzed. In particular, the decay and boundness properties of the
solutions are considered in order to provide further insight into the different formula-
tions presented herein. Moreover, we propose a set of symmetric hyperbolic equa-
tions for both the biaxial and the uniaxial PML methods in the time-domain, which
is fine-tuned in numerical experiments and very suitable for time-domain problems.
All three types of spherical and cylindrical PML methods are applied in simulations
of plane wave scattering as well as radiating dipole problems. We use a multidomain
pseudospectral (Chebyshev) numerical scheme, and the effectiveness of the PML
methods is demonstrated through the accurate numerical results obtained. The order
of outer-boundary reflectionis as low as 0.1% of the exact soluti@ngss Academic Press

Key Wordsperfectly matched layer; pseudospectral method; multidomain method.

1. INTRODUCTION

In [1] Berenger proposed the perfectly matched layer (PML) method to truncate cor
tational domains, used in the numerical solution of Maxwell's equations, without cau:
any reflection. The method was developed in Cartesian coordinates and the absorbing
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748 YANG AND PETROPOULOS

was shown to be nonreflecting at the rectangular vacuum-layer interface. It was exter
into 3D in [2]. Recently, efforts have been seen to extend the rectangular PML methods
polar (2D), as well as spherical and cylindrical (3D) coordinate systems.

Unfortunately, some direct extensions of the split-field rectangular PML to cylindric
and spherical coordinates are not sufficiently justified, either theoretically or numerice
[5, 14]. They are not reflectionless. As the split-field methods are still being used, we th
that it is necessary to give extensions that are both theoretically and numerically justif
The split-field methods we propose and numerically tested attain this objective. Our meth
are different from those recently proposed by Teixeira and Chew in [15]. The hyperbc
formulation of their methods also required a Berenger-like field splitting that is differe
from ours and were presented with no proof of the reflectionless property.

Also, the so-called uniaxial anisotropic medium (unsplit) rectangular PML metho
[6-8] are extended to the coordinate systems considered herein. Extensions of these me
into other coordinate systems have also been attempted by many researchers. Kuz
and Mittra presented [9] nonplanar absorbers for finite-element mesh truncation. T
derived the reflection coefficients of their methods for spherical and cylindrical waves ¢
showed that, in contrast to the rectangular true-PML method, the coefficients were
longer identically zero. The existence of ideally nonreflecting PML methods in spheri
or cylindrical coordinate system remained unknown. In fact, the numerical results in [’
exhibit reflection up to 3%. In [16], the same authors obtained some different spherical
cylindrical PML methods, but no numerical results or comparison with the previous or
were given and, again, they did not prove their approach constituted a true PML.

Earlier [3], Yanget al.had already proposed a split-field PML method in polar coordinate
(2D) which they applied to simulations of scattering by circular cylinders. That method w
an extension of Berenger’s rectangular PML. It was proven to be perfectly matched at
circular vacuum-layer interface while the superior accuracy of the method was demonstr
in numerical experiments. Further, [3] also discussed an alternative splitting, similar to t
recently proposed in [15] and showed that its numerical results were substantially wc
than the results of the proposed splitting. In the present paper, we continue with extens
of Berenger’s rectangular PML into more 3D coordinate systems. We shall show that, |
in [3], these extensions still retain the perfectly matched property of Berenger’s rectang
PML method and we shall also present supporting numerical simulations. Indeed, gc
from methods in 2D polar coordinates [3] to methods in 3D cylindrical coordinates in tl
present paper is direct.

A nonsplit and well-posed ideally nonreflecting formulation of the PML method in pole
coordinates was given in [4]. The efficacy of the method was demonstrated with numer
experiments. The present paper shall show that ideally nonreflecting unsplit PML me
ods can also be obtained in 3D spherical and cylindrical coordinate systems through
same approach for vector electromagnetic waves. A plane-wave analysis of the unsplit F
methods is given to demonstrate the point. More importantly, the proposed time-domn
equations of the unsplit PML methods are symmetric hyperbolic. Although these PI
methods are still extensions of the anisotropic medium rectangular PML [6-8] into ott
coordinate systems, the approach used to derive these extensions is different from tha
posed in [16]. Due to the symmetry, well-posedness naturally follows from our formulatic
which is not true for other formulations in general. We have also fine-tuned our formu
tion in numerical experiments and the proposed one in this paper is found to have the
accuracy and robustness.
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Since our split and unsplit PML methods in cylindrical coordinates are straightforw.
extensions of our corresponding polar PML methods in 2D, our emphasis will be on
discussion of PML methods in spherical coordinates, where the split-field spherical P
the biaxial spherical PML, and the uniaxial spherical PML will be analyzed and fu
tested. We shall mainly discuss the plane-wave solutions of these PML methods and
the perfectly matched property and the decay of fields propagating in an arbitrary direc
using plane waves.

For 3D spherical and cylindrical PML methods, the desired vacuum-layer interfaces
the surface of a sphere and the surface of a cylinder, respectively. The methods we de
admit plane-wave solutions that match perfectly at the vacuum—layer interface, i.e.,
plane wave can pass through the interface without reflection. This is true for plane w
of any frequency and any incident angle. Decay properties are discussed for the split:
PML methods only. The split-field spherical PML method has the unique merit that pl
wave of any incident angle decays in its propagation direction, which is true in the wr
layer region. Split-field PML methods in other coordinate systems do not have this prop
and they usually depend on the corner regions for the complete absorption of waves
the proposed unsplit PML methods (biaxial or uniaxial), since the additional scaling fac
in the plane-wave solutions are only rational functions and the exponential decaying fz
dominates the magnitude of the solutions, influence of the additional scaling factors ol
decay properties of the solutions is limited. Here we want to emphasize that we have t
the propagation direction of plane waves into account in our analysis of the decay prog
Reflection and field decay analysis (using cylindrical and spherical waves), and the
that the uniaxial PML in cylindrical and spherical coordinates is a true PML can be fol
in [17]. The analysis approach herein is related to the analysis approach of [17] througl
plane wave expansion of cylindrical and spherical waves and the addition theorem.

Numerical simulations of plane-wave scattering by a metal sphere and a radiating di
are done to test the spherical PML methods. We also show a comparison of the split-fiel
uniaxial PML for a radiating dipole whose time variation is a step function that turns on
stays on for the duration of the simulation. Numerical simulations of scattering by a m
cylinder of finite length are also done to test the cylindrical PML methods. The numer
scheme we use is a multidomain pseudospectral (Chebyshev) scheme. The scheme
accurate and as suchitis a good choice in order to fully manifest the effects of PML mett
in numerical experiments. For example, our numerical results suggest that the reflecti
the spherical PML methods is as low as 0.1% of the exact solution.

The remainder of our paper is organized as follows. In Section 2, we give the r
dimensionalized 3D Maxwell’s equations and its plane-wave solutions. In Section 3,
give the extensions of Berenger's PML methods into spherical and cylindrical coording
Section 4 discusses the biaxial and the uniaxial PML methods, first in rectangular,
then in spherical and cylindrical coordinates. In Section 5, numerical results validating
methods are presented, and concluding remarks are given in Section 6.

2. THE NONDIMENSIONALIZED MAXWELL'S EQUATIONS

We consider Maxwell’'s curl equations in free space:

1. =
—V x E, Q)
ot Ho
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— = —V x H. (2)

Hereeg and g are the free space permittivity and permeability, with the speed of light i
free space being= (o) ~Y/2. To facilitate our analysis of PML methods, we scale the
independent variables to nondimensionalize the above equations,

x=%/L, y=¥/L, t=¢&/L,

wherelL represents a length scale. Subsequently, the fields are normalized,

H=H E=,/2E=z"'E,
o

where Z, represents the free-space impedance, and the nondimensionalized Maxw
equations are obtained:

aH
— =-VxE, 3
m x 3)
IE
— =VxH. 4
P x (4)

We can write out the vector components of the curl operators in (3)—(4) and obtai
system of six coupled scalar equations. In three-dimensional spherical coordinéies,
we have

dE 1 9 . 1 O0H
L= = (sinfHy) — ——— ", (5)
ot r sing 06 rsing d¢
oE 1 oH 19
i L 2 —(rHy), (6)
ot r siné d¢ ror
0E, 190 10H;
— = -——(@0Hp) — ——, 7
ot —rar e T g "
oH 1 o0 . 1 OE
=~ (SINAE) + —— —, 8
ot r sing 96 rsing d¢
dHy 1 0E 109
— =— ——(rEy), 9
ot rsin93¢+rar( 2 ©)
aH, 19 10E,
— =—-—(E - . 10
ot car B0 e (10)
In three-dimensional cylindrical coordinates ¢, z), we have
0E 10H oH
T _ Tz 7% (11)
ot p 0 0z
0E oH oH
T _ T T2 (12)
ot 0z ap
0E 19pH 19H
z_ 2%y 290 (13)

ot p 9dp p ¢

To avoid repetition, we skip the governing equations for components of the magnetic fie
This rule is followed hereafter when appropriate.
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Maxwell’s equations admit the plane-wave solutions

E = (11X + M + ny2) < t-x-my-n2), (14)
H = (128 + my§ + ny2) et-x—my-n2, (15)

where
1% + My + 12 = (8 +mo¥ +ne2) x (XK +my+n2), (16)
I2)?+m29+n22= (I)”(—i—m)”/—i—ni) X (|1§(+m1§/+n12). (17)

For a plane wave incident in the directiéf ¢o, we have

eiw(tflemyfnz) — eia)(t — 1 (costp cost + sinbp Sind cos¢ — ¢o))) (18)

in the spherical coordinate system and

got-Ix—my-nz _ eia)(t —VI=n2pcos¢ — ¢o) —N2) (19)

in the cylindrical coordinate system.
The plane-wave field components in spherical coordinates are given as

E, = (cos¢ sindl; + sing sindmy + coshn,) g @t ~1(cosocosd+ sinfosind cosié — o)) - (2()
Es = (Cosp cosAl1 4 sing coshm; — singny) gt ~1(Costocosd+ sinfosing cosé —o))) - (27

E¢ — (—sin¢>l1+ cos¢ml) eim(t — 1 (C0SHp cOSH + Sinbp Sind coSp — ¢o))) (22)

and the plane-wave field components in cylindrical coordinates as

E, = (cosgly + singmy) gdot=vi-?pcos¢ —go) —nz) (23)
Es = (—singly + cospmy) dolt—vi-npcogp—go)—nz) (24)
E, = ny é(t-vI=n’pcoss —go) —nz) (25)

These plane-wave solutions are to be perfectly matched to decaying plane-wave solt
in the absorbing layer.

3. EXTENSIONS OF BERENGER'S PML METHODS

In this section, we present the extensions of Berenger's PML methods to spherical
cylindrical coordinates. The plane-wave solutions of these PML methods are simpler
those of the unsplit methods which will be given in Section 4. We shall also prove t
plane-wave solutions in the spherical PML decay in all directions of propagation.

In the following, we first explain Berenger's PML method with a varying conductivit
parameter and analyze its plane-wave solutions. Then we present our spherical and
drical PML methods and analyze their decay property in the direction of wave propagat
We have found in our work that this property is important for the success of PML methc
In any numerical computation, there are numerical reflections at the outer boundaries
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PML due to the inexact boundary conditions applied there and one wants those refle
waves, although of very small magnitude, to be further absorbed as they propagate |
towards the interior region.

3.1. Berenger's Perfectly Matched Layer

In [1] Berenger gave the perfectly matched layer method suitable for rectangular ¢
truncation and wave absorption. Here we give a simplified plane-wave analysis of
method, where we consider a layer of continuously varying absorption strength.

Our approach is to obtain the equations that admit plane-wave solutions with a frequer
independent decay factor of the following form:

D(x, y,2) = eflax(X)*may(y)fnaz(z)' (26)
We then have the split-field PML system in Cartesian coordinates,

aExy d(Hzx + sz) _

ot~ ay y(¥) Exy. =7)
38Etxz _ _a(nyaJZr Hy2) 042 Exa, (28)
a;yz _ a(nyaJZr Hx2) 042 Eya, (29)
88Etyx _ _a(Hzxaj(‘ Hzy) 0 () Eys. (30)
ur _ st e, @)
38Etzy _ _8(HXY8; ) _ oy (¥)Ezy, (32)

that admits the following decaying plane-wave solutions:

Exy = —nom @otX=2ym=n2p(x y 7). (33)
Eyp = Mon @o0X=Ymn2p(y 'y 7). (34)
Ey, = —londetXymap(x y 7). (35)
Eyx = Nl e @tX=ym=n2px 'y 7), (36)
Exx = —mpl tXYmnap (¢ y 7), @37)
Epy = lom @XI=ym=napx 1y 7). (38)

According to the relations (16)—(17) that cougleng, n), (11, m1, n1), and (2, my, ny), we
haveE,y+ Ex; = ExD(X, Y, 2), Ey,+ Eyx = EyD(X, Y, 2),andE,x+ E,y= E,D(X, y, 2),
whereE,, Ey, andE; are the plane-wave solutions in Eg. (14). So the decaying plane-wa
solutions in the layer region match perfectly with the plane-wave solutions in a vacuun
we letoyx(X), oy(y), ando,(z) approach zero smoothly enough wheny, z) approaches
the vacuum-layer interface from the layer side.
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3.2. Spherical Perfectly Matched Layer

In this section we propose a split-field spherical PML method. We use the methol
terminate spherical computational domains and the vacuum-layer interface is a spher
prove that plane waves of any incident direction and any frequency pass the vacuum-
interface without causing any reflection and decay in all directions of propagation in
layer region independently of the frequency. The absorption in the layer only varies \
the radiug, and it approaches zero smoothly towards the interface.

In designing such a perfectly matched layer, we split the original equations and add |
order absorbing terms (see undifferentiated terms below). Our approach is an extensi
the idea of Berenger's PML method to spherical coordinates, rather than a direct transl
of Berenger’s PML equations to spherical coordinates (wtiadgs notesultin atrue PML).
We have found that it is not necessary to splitir@mponent of the fields as thig and
H; components are never tangential to a PML region. This is in contrast to the situatio
cylindrical coordinates (see Section 3.3).

In deriving the spherical PML method, our objective is to obtain differential equatic
that admit plane-wave solutions with a decaying factor of the form

D(I’, 9’ ¢) — @0 (r)(cosfp cosd + sinép sind cos(¢—q>o)). (39)

We obtain the following split-field formulation of Maxwell's equations in the layer:

Eﬁr=r;&ﬂ%@mme+Hw»—r;wam%£+M)—mf)a,(MD
aaE'[9¢ T s:iLnG 883 - ;_L(Hzpr + Hgp) = & w Eog. (“41)
air:_MHﬂ;Hw)—dﬁﬁm, (42)
azl)Efr _ 3(He¢8:- Hor) o/ () Eyr, (43)
a;f"’ =_r}88|;r +%(H9¢+H9r)_ Urr(r)E¢9~ (44)

We note that one only needs to solve 10 equations, of which we just give five in the ab
compared with 12 equations one needs to solve for the split-field rectangular PML met
We also note that in [15], six additional field components are needed inside the PML
[15], the reflection of the spherical PML is 0.8% of the maximum amplitude of the simula
pulse. The methods are similar in nature in the frequency domain, and the approache:
require a splitting of the fields to give a PML for transient waves. However, no split-fie
time-domain formulation was given in [15] and we had shown in [3] that having the ri
split-field formulation is important.
Let the vacuum-layer interface beratrq. We require that, (r) =0 forr < rq for the

decaying plane waves in the PML to match incident plane waves perfectly. The func
or (r) must satisfy the requirements

or(ro) =0 (45)
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and
or(r) >0 forr >rg, (46)
so that the plane-wave solutions decayrforro. We also require that
o/(r) >0 forr>r. 47
An example of a valid choice far, (r) is
(M) =C@r —rp)", n=1,2,...;1 >ry, (48)

where C is a positive constant. This family of functions satisfies the requirements
(45)—(47).

The split-field PML equations admit the following set of plane-wave solutions with th
desired decaying factor:

E,; = (cos¢ Sinfl1+ sing sinfm, + coson,) g @ {1 (Costo cosd+sindosing cotp—¢oD) iy (1 g ),

(49)
Egg = (cOsg sinbl, + sing sindm, + cosony) sindp Sin(¢ — ¢o)
% eiw(t—r(coseo cosh + sinfp sinf co¢ — ¢o))) D(I’, 0’ ¢)7 (50)
Eor = (—singl, + cospm,)(Coshy cosh + Sindy Sind co¢ — ¢g))
% eia)(t—r(coseo cosf + sindp Sinf co¢ — ¢o))) D(I’, 0’ ¢), (51)

Eyr = —(cosg costl, + sing cosdm, — sindny) (CosHy Coss + sinbp Sinf cog¢ — ¢p))
% eiw(t — 1 (C0Stp c0SH + Sinbp Sind coSp — ¢p))) D(I‘, 9’ ¢), (52)

Eyo = —(cose sinbl, + sing sindm; 4 coshn,) (coshy siné — sinfy cosd coS¢ — ¢o))
% eiw(t —r(C0Sp c0SH + Sinbp Sind coS¢p — ¢o))) D(r, 0’ ¢), (53)

where (2, my, nz), (11, my, 1), and (, m, n) satisfy (16)—(17). Note that now we have
| = cosgpp Sinfp, m = singg Sindp, andn = cosby. One can verify that
Eop + Eor = [(cos¢ sindl, + sing sindm, + cosHny) Sinfy Sin(¢p — ¢o)
+ (—singl, 4+ cospm,) (cosdy cosh + Sinbdy Sind coL¢p — ¢))

% eiw(t — 1 (C0Stp COSH + Sinbp Sind cop — ¢o))) D (I’ 0 ¢)

(cosg cosbl; + sing cosdm, — singny)|
x eiw(t — 1 (C0Stp COSH + Sinbp Sind cop — ¢o))) D (I’ 0 ¢)

EyD(r, 6, ¢), (54)

and, similarly, one can also verify that

Esr + Ego = E4D(r, 0, ¢), (55)

by applying the relations (16)—(17) that cougleng, n), (I1, my, n1), and (2, My, ny), where
E,, Ey are the plane-wave solutionsin Egs. (20)—(22). Hence, at the vacuum-layer interf:
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whereo; (r) =0, the decaying plane wav&s, Eyy + Eyr, andEy + E49 match the plane-
wave solutionss, , Ey, andE, in free-space perfectly. Note that this is true for plane wave
of any frequency and any incident angle.

It is not straightforward to understand the decay property of the plane-wave solutior
the layer by looking at the decay facter (")(Cost c0s+ sinfosing cosp —¢o)) | order to get
a clear picture of the rate of change of the magnitude of the wave, one must analyz
directional derivative of the decay factor.

LEMMA 3.1. Letl = (cosgg sindy, singg sindg, coshy) be the normalized wave vector
and assume that, (r) satisfies the condition@6)—(47). Then all plane waves decay in the
direction of propagation as

D (I’, 0 , ¢) Jeor (r)(cosfp cosh + sinbp sind cogp — ¢op))
al B al
when r> rq for any ¢g andé.

<0, (56)

Proof.
oD(r, 0, ¢)
al
. aoD(r, 6, ) ) oD(r, 0, aD(r, 0,
= cos¢osm00M + smgbosmeoM + cos@oM
aX d 0z
. . aD(r,6,¢) . sing aD(r, 0, ¢)
=Co Sinfy cosp sinf —— — co S
Sfo 0COSp r Sto % sing 00

. cosgcosh aD(r, 09,
+ €OS¢g Sinfy S¢r ( 2

00
aD(r,6,¢) . . €cosp aD(r, 0, p)
————— "%+ siNgg Sinfyg—

or +Singosi 0r sing dp
sing cosh aD(r, 9, ¢)

r 200

+ singg sinfy sing siné

+ singg sinég

aD(r, 6,
%—COS@

sing aD(r, 0, ¢)
Y
aD(r, 0, ¢)
d

r

+ c0sfy cosh

= (SiNfy SiNB cog ¢ — ¢g) + COSHy COSH)

1 0D(,0,¢)
r sing a0

— sinBy sin(¢ — ¢o)

. . 10D(r, 0, ¢)
+ (sinfp cosh cog¢p — ¢pp) — COSHy SInG)FT

zo'r(r)

= —|(sinfy Sin6 cog¢ — ¢g) + COSHy COSG)Zar'(r) ~+ (sinfg sin(¢ — ¢o)) —

+ (sinfy cosh cog¢ — ¢pg) — COSHy sin@)zarT(r) D(r, 0, ¢).

Hence we have
oD (r’ 9’ ¢) ge—or (r)(costy cosh + sinbp Sind o — ¢o))
a al
for any ¢y andfy. m

<0
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The lemma shows that all plane waves entering the PML decay exponentially along
direction of propagation inside the layer. In an actual computation, the PML does not ext
to infinity and there will be reflections from the outer boundary of the PML region. In thi
case, the decay relation (56) still holds for the reflected waves. Thus, the reflected w:
get further attenuated along the way back towards the computational domain. Note
reflected waves, even numerical reflections, can be expanded in plane waves locally.
is the reason for the success of the PML methods. Since

or (r)

(Sinfo Sind oS¢ — o) + COSFy COSA)?a; (1) 4 (SiNby Sin(g — ¢o))2r—

or(r)
r

- . ZUI’ (r) B ’
+ (Sinfp cosH cog ¢ — pg) — COSHy SING) — > min( o,/ (r), >0 (57)
forr > rp, we have a lower bound for the rate of decay regardless of the direction of we
propagationpy anddy in the layer region away from the interface. We emphasize that w
cannot find such a lower bound for the PML in Cartesian coordinates.

3.3. Cylindrical Perfectly Matched Layer

It is also desirable to have a perfectly matched layer method in cylindrical coor
nates. Here the vacuum—layer interface is required to he-apy and|z| = z,, where
po andzy are constants. For this purpose, we can apply the polar perfectly matched le
[3] in the p — ¢ plane and apply rectangular perfectly matched layer method irz-the
direction.

Our objective is to obtain the equations that admit plane-wave solutions with the de
factor:

D(Io7 o, 7) = —ap(p)mws(lﬁ—(bo)—az(z)nz. (58)

With the split-field approach, we need to solve the following equations:
0B,z 3(Hgz+ Hgp)

P = P UZ/(Z) E,z (59)
0E 10(H H
pe _ = ( 2+ z¢) _ Up(P) Ep¢, (60)
ot P Gloj P
8E¢Z 3(sz + Hﬂ¢) ’
= — Es,, 61
dEg, 0(Hz, + Hzp)
= % - a/; (0)Egp, (62)
dE,, d(Hgpz + Hyp) ,
= — E,,, 63
at 9 Up(,o) 2p (63)
8EZ¢ :_Ea(HPZ+HP¢) + H¢Z+H¢P _Gﬂ(p)E (64)

at P e P p

We note that in [15], although it was tested in 3D, the equations for the cylindrical PV
was actually given in 2D and the method was similar to Navarro’s method [14] alrea
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discussed in [3]. Unfortunately, Navarro’s method was shown to have a poorer perform
than our method [3], which might be the reason for the substantial 3% reflection see
[15]. The important thing to notice is that the teti,, + Hy,) /0 is in Eq. (64) rather than
in Eq. (63).

Letthe vacuum-layer interface bemi= pp and|z| = zy. We should require that, (o) =0
for p < po ando;(z) =0 for |z| < zp in order for the decaying plane waves in the PMI
to match incident plane waves perfectly. Following the considerations of the absort
and reflectionless properties of the polar PML methgd ) ando,(z) must satisfy the
requirements:

0,(p0) =0, 02(2)|jz1=2, =0, (65)
and
o,(p) >0 forp > pg, 0,(2) >0 for|z|l > z, (66)
so that the plane-wave solutions decaydor pg or |z| > z5. We also require that
o,(p) >0 forp > po, 0,(2)>0 for|z| > z. (67)
An example of a valid choice af,(r) ando,(2) is

0,(p) =C(p—po)", N=12...;p > po, (68)
0,(2) =C(lzl — 29", n=1,2,...:1Z| = 2, (69)

where C is a positive constant. This family of functions satisfies the requirements
(65)—(67).

For the cylindrical perfectly matched layer method, it can be verified that we have
following decaying plane-wave solutions:

E,z = (—singl, + cospmy)n dolt—pvi-n?cots—go 20 ¢ 7), (70)
Eps = N2Sin(g — o) /1 — n2delt=pviznieoss oo =zp ¢ ) (71)
Eysz = —(COSply + singmy)n gt —VI-Peoss —oo —20)py (5 o 7). (72)
Eo = N2COS$ — po) /1 — n2ele(t-oVImmieoss o =2p o 7 (73)
E, = —(—Singl+ cospmy) cos(p — o)/ 1—n2 d@lt—pVi-n?coso—go-z0p o 7).
(74)
E.p = —(COSplo+ Singmy) sin(g — go) v/ 1—n2 @ (t—pVI-Pcoso—do—znpy o 7).
(75)

where (2, my, ny), (11, My, n1), and (, m, n) satisfy relations (16)—(17). Note that now we
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havel =+/1 — nZcosgpy, m=+/1 — nZsingp, andn =n. One can verify that

E; + Ez = —((—singl, 4+ cospmy) cos¢ — ¢o) + (Cosgl, + singmy)

x SiN(g — ¢p)) /1 — N2t =P8 =90 =20y ¢ 7)
—(—Singygls + COSPomMy) /1 — n2 @t —PCOsd—d =20 (), 5 7)
— ny @@t —pVI?coss —go) —2n) D(p, ¢, 2)

EZD(ps ¢,Z), (76)

and, similarly, one can also verify that

E,z+ Eyp = E,D(p, ¢, 2), (77)

by applying the relations (16)—(17) that cougleng, n), (I1, My, n1), and (2, My, ny), where
E,. Es, andE; are plane-wave solutions in Egs. (23)—(25). Hence, at the vacuum-lay
interface, wherer, (p) = 0,(2) =0, the decaying plane wavés,; + E, 4, Es, + E,,, and
Ez + Ez match the plane-wave solutiofs, E,, andE; in free-space perfectly. Note that
this is true for plane waves of any frequency and any incident angle.

We can also analyze the directional derivative of the decaying factor to get a clear pict
of the rate of change of the magnitude of the plane waves. The analysis is a straightfory
extension of the 2D polar PML analysis given in [3]. Here we only give the result.

LEMMA 3.2. Letl=(+/1— nZ2coseo, ~/1 — n?singg, n) be the normalized wave vector
and assume that,(p) ando,(z) satisfies the condition@6)—(47). Then plane waves do
not increase in all directions of propagation as

aD(p, ¢, 2) _ §e—9(p) COSP — ¢o) — 02(2)Z
ol N al

<0, (79)

whenp > pg or |z| > zy for any ¢g and n.

The decay property of the cylindrical PML is shared by both the rectangular and po
PML methods [3]. It is only in two special cases that plane-wave solutions do not dec
in the PML, i.e., when plane waves propagate inzkdirection and in the regiop > pg
and |z| < 7y, or when plane waves propagate in the direction orthogonalaod in the
region p < pg and|z| > zyg. The corner regionsg > po and|z| > z, are important for all
plane waves to be absorbed. However, the situation here is much less severe than th
the rectangular PML method.

4. THE BIAXIAL AND THE UNIAXIAL PML METHODS

Since Berenger first presented the split-field PML method, efforts have been madt
modify the method and obtain unsplit PML methods. Besides from the latter methods’ be
computationally more efficient, the efforts are worthwhile since the split-field rectangu
PML equations are only weakly well-posed and may suffer from instability problems,
shown in [11].
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The unsplit PML methods we present in this section modify Maxwell's equations
adding low-order (undifferentiated) source terms that satisfy ordinary differential equatic
Hence the governing equations are symmetric hyperbolic and strongly well-posed just
the original Maxwell's equations. The plane-wave solutions now have additional sca
factors which depend on the frequenay, This additional degree of freedom makes i
possible to design the unsplit-field PML methods.

4.1. The Perfectly Matched Anisotropic Medium

In [6] a PML method using an anisotropic lossy uniaxial medium was presented and
applied to frequency-domain-based finite-element methods. The works [7, 8] impleme
the uniaxial medium as a PML for the FD-TD algorithm. The constitutive parameters
this anisotropic medium are given in terms of the complex permittivity and permeabi
tensors = eg[A] andw = uo[A], where [A] is the diagonal matrix,

1+%2 9 0
Al=| 0o 1+%2 o |, (80)
0 0 1

0} (2

iw

that represents a uniaxial medium in theirection. In the uniaxial medium, the nondi-
mensionalized Ampere’s law can be expressed in matrix form as

oH, _ oH,
ay ~ oz Ey

dHy oH, | __;

iz~ o |=1elAl By | (81)
aHy  dHy E;

X 3y

It was shown in the original papers that the above equations admit the plane-wave solu
E= <|1x +my + n1<1+ il )> ) got-ix-mynagrox(@n, (82)
CU

<I2x +myy + n2<1 1 % )> ) got-ix-mynagrox(@n, (83)
iw

where (, m, n), (I3, my, n7), and (2, My, ny) are coupled by the relations (16)—(17). The
above solutions are unboundedwas> 0, which is certainly unphysical.
However, we can design a layer that has the plane-wave solutions

%) iw :
E= (]| i >2+m i & +n 5 elw(tflx—myfnz) efaz(z)n’ 84
(laz/(z)—i—la) Yol @ tiw 1) 84)

%) iw :
H=(lp——————% 4+ my—————§ 4 ny2 | dot-x-my-n2 g-z@n (g5
<202/(Z)+Ia) T D Fie T 2) (85)

where (, m, n), (11, mg, n7), and (2, My, np) are coupled by the relations (16)—(17). The
magnitude of this set of plane-wave solutions are uniformly bounded. It can be verified
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they are the solutions of the following equations:

oH, dHy al(2)

Iy 9z o) (Z)+|a)Hy Ex
ot _ o, AL =iw[A]| E 86
9z X + U (Z)+Iwa [ ] Yy . ( )
8Hy  9H E
X T ay 0 z

Note that Eq. (86) implies the biaxial constitutive [&v= [A] - E +[M] - H, whereM is
the matrix

o/ (2) /1w
0 _GZ’(Z)Jriw 0
[M]=| s¢@/io (87)
o, (2)+iw 0 0
0 0 0

Moreover, whery) (z) =0, Eq. (86) is the same as Eq. (81). In that case only, syste
(86) admits both the unbounded solutions in Egs. (82)—(83) and the bounded solutior
Eqg. (84)—(85), ag — 0. Clearly, the physical solutions are the bounded ones. Thus, v
show that if the strength of the uniaxial absorbing medium is constant, it admits decay
plane waves that are uniformly bounded, while in previous papers, there was alway:
unbounded scaling factor associated with the solution in the uniaxial medium.

In a numerical implementation an on/off switch can be used to drop the lower-order ter
in the left-hand side of (86), i.e., zero thematrix, thus allowing us to compare the biaxial
and uniaxial approaches on a given problem with a given conductivity profile in the lay
Also, a varying-profile uniaxial PML can also be viewed as a series of constant-profile u
axial PML’s. This, together with its simpler formulation, suggests that the uniaxial PML m:
have a better performance in numerical experiments. We note here that [10] gives a unic
PML in rectangular coordinates whose plane-wave solutions are uniformly bounded fc
variable conductivity uniaxial PML, but the damping properties of that layer dependnod
one no longer obtains frequency-independent damping of propagating waves. Also, the t
domain form of [10] is computationally more expensive than the standard unsplit PML whi
they erroneously prove to be noncausal. We desire to maintain the frequency-indepen
damping for the bounded solutions and therefore we develop the biaxial unsplit PML.

A direct application of the uniaxial medium idea in spherical and cylindrical coordina
systems was presented in [9], where analysis of the reflection and absorption of cylindr
and spherical waves in the medium was given. Some restrictions and problems with
direct application of Sacks’ anisotropic medium idea in those coordinate systems w
observed. Kuzuoglu and Mittra obtained the spherical and cylindrical wave solutions in
medium and their reflection coefficients at vacuum-layer interface. These authors obse
that the medium was not ideally nonreflecting anymore and showed that it could effectiv
absorb waves without reflection only under the condition that the radius of the vacuum-Ilz
interface is electrically large.

In the following, we discuss the biaxial and the uniaxial medium PML methods which &
ideally nonreflecting at the vacuum—layer interface in spherical and cylindrical coordinat
These extensions are different from those proposed in [9], of course. The relation betw
the biaxial and the uniaxial medium PML methods in spherical or cylindrical coordinat
is the same as that in Cartesian coordinates. The biaxial PML method admits plane-v
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solutions that are uniformly bounded and can be reduced to the uniaxial PML metho
choosing the spatial variation of the damping or by dropping the extra source term
described above. For conciseness, we will not give the equations or the solutions fo
uniaxial PML methods separately.

4.2. Anisotropic Spherical PML Methods

In this section we give the equations and solutions of the anisotropic spherical F
methods. The methods, by construction, are symmetric hyperbolic and strongly well-pc
For this well-posed spherical PML method, the following plane-wave solution is what
desired in the layer,

Hr = H D(r, 6, $), (88)
G'r(r) i

~ a0 1w

Hy = ———H,D(, 0, ¢), 89

0 () Fiw b D(r, 0, ¢) (89)

- ”’T(r)—i—ia)

Hy=—" " HyD(,86, ), 90

e S P r,0,9) (90)

whereH;, H,, andH, are plane-wave solutions of the original Maxwell's equations anc

D (I’ 0 ¢)) — g (r)(costp cosh + sindp sind cog¢p — ¢o)) (91)

is the decaying factoE, , E4, andE, are defined similarly. Let the vacuum—layer interfac
be atr =ro. We require that, (r) =0 forr <rq for the decaying plane waves in the PML
to match incident plane waves perfectly. Following the considerations of the absorbing
reflectionless properties of the polar PML methedy ) must satisfy the same conditions
as those in Egs. (45)—(47). Thus the decaying plane-wave solutions are perfectly mai
with the free-space plane-wave solutions. For the type of funetién) we use, one notes
that

%O _ o/ 92)

holds for allr > rg. Hence, the above plane-wave solutions are uniformly bounded.

LEMMA 4.1.
1 9H, aH, H H o) 4 j JIE
AL UL/ L A Y O 0 K SR
rsing d¢ ar r o/(N +lw lw at
Proof. We have
1 oH, a4Hs H , H
; ro o e o (r)/i‘ﬁ
rsing o¢ ar r o/(r +lw

o (1) H or(r) i
:+_+|w 1 DaH,_}DHq5 _r—f_+|w 5 2Ho
lw rsing d¢ r lw ar
1 a0 41 A a0 4w\
+DHy - 2 DPH,—o' ) [ T2 DR,
r o/ +iwr o/(N+iw o/(N+iw
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ol 4 1 _oH 1 aH
el D—" — “DH, - D—2
lw rsing  d¢ r R0}

Oy Or / " i

o -1 (%) of Hg

o/ +lwr ¢ o/ +lw ? o/ +lw ¢~ o/(N +lw
1 9H 9dH, Hy
rsingd d¢ or r )’

or () i
. +lw

D(,6,¢) (

Hence Eq. (93) holdsm

Remark 4.1. Similarly, we can prove other relations that are needed to obtain the eqt
tions that admit the desired set of solutions, e.g.,

9H, 18H, H H 20 +iw
0 r +79+O'r”(r) ¢ i — T i
ar r a6 r o/(rN +lw lw

9E
D(, 6, ¢)a—t". (94)

The guiding principle of the construction is to maintain the principal part of Maxwell’
equations unchanged.

In obtaining the set of equations that admit the desired solutions, we add complemen
source terms to the original Maxwell's equations. Let us denote

Bir = o/ (r). (95)

We first give the equations in the frequency-domain:

a4 jp)° . 1 9 - 1 af

(7 + f‘)) E = (sing(Ay) — —— 2, (96)
o/(N +iw r sing 06 rsing d¢

_ - 1 oaH, odHs H

(o+0/(r)Ey = d 2 =% Qu. 97)

rsind d9¢ T: r
. -~ 9H, 19H, H
(|0)+O’((r))E¢=WO—F 89r +T0+RH (98)

The supplementary fields have the solutions:

Bi, ~
= ——Hy,, 99
QH Tt (99)
Bi ~
LA (100)
o/ +iw
To verify EqQ. (96), one needs to notice that
3 ~ 1 9H a0 4w 9E
% (sina(Ay) — — o _Tleds (101)
r sing 96 rsing d¢ o/(r)+iw ot

To verify Eq. (97) and Eq. (96), one needs to apply Eq. (93) and Eq. (94), respective
Evolution equations foH,, Hy, andH, can be similarly obtained.
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To obtain the time-domain equations, we let

_ a® 4w .

Er = ri—i—-wEr, (102)
o/(N +lw
or () 1

n - tlo ~

=20, (103)
o/ +iw

and denote
De = E — E;, Dy =H, —H,. (104)

We obtain the set of equations that is symmetric hyperbolic, from which the well-posed

fO”OWS,
9E 20, -
r < r (1) r,(r)> E,

ot r

(S|n9(H¢)) L _9H, + (Urr(r) - a{(r)) De, (105)

~ rsind 90 rsing a¢

IEq 1 9H, 8Hs Hy

— r — -— - , 106
ot +U() “~ rsing 0¢ or r Qn (106)
BE 8H9 13|:|r HNQ
— NE - — + Ry, 107
8+a()¢ o r89+r+H (107)

and the supplementary ordinary differential equations are given in the following:

dDg
== = (/0 =T )E —o/)De. (108)
ast” = Bi,Hy — 0/ () Qu, (109)
% = Bi;H, — 0/ (1) Ry. (110)

As in the Cartesian case, one can reduce the biaxial PML to the uniaxial PML met
either by dropping the extra source terms, i.e., setBigto zero with a switch, or by
choosing a linear loss profile in the layer. Th€h andRy become zero and the governing
ODEs are not needed. A set of uniaxial plane-wave solutions for a varying uniaxial PML,
o/ (r) notidentically zero, can be obtained by multiplying the biaxial plane-wave solutic
by (¢/(r) + iw)/iw. The whole scenario is very similar to that in the Cartesian case.

In the frequency domain, the uniaxial PML equations obtained from Eqgs. (96)—(98)
essentially the same as the ones proposed by Teixeira and Chew in [16], and the
proposed by Petropoulos in [17]. However, the time-domain equations in [16] are diffel
and there are no numerical experiments presented.

The above supplementary fields exhibit some propert|es that have been found use
numerical computation. One notes that— Dg = E,, H, — Dg = H,, and the f|eldsE,,
E,, andE¢ have the same scaling facter(r)/r +iw/o/ (r)+iw. One also notes that all the
supplementary fields are zero at the vacuum—layer interface. In fact, the above formul
of the spherical PML method is obtained by fine-tuning the formulation of the auxilie
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fields and auxiliary equations. The final formulation is found to have the best accur:
and robustness in numerical experiments, besides having the property of being symm
hyperbolic.

In our multidomain computational scheme simulating the spherical PML, we apply a'
cally rotated coordinate system in subdomains near north and south poles to avggiriie 1
singularity. Hence we want to transform forward and backward betwegrgy, E,) and
(Er, Ey, E4) to patch the fields. Note that this needs to be done at the subdomain interfz
of the rotated subdomains only. In our scheme, we make use of the fact that the supplet
tary fields are zero at the vacuum-—layer interface. The details of the implementation will
given elsewhere.

4.3. Anisotropic Cylindrical PML Methods

Finally, we give the anisotropic PML methods in cylindrical coordinates. For the anis
tropic cylindrical PML method, the following plane-wave solution is what we desire in tt
layer:

iw

S = e 111
’ 0,2 +iw »D(p.0.2), ( )
iw %) 4
o= ( EyD z 112
= iw
S e D0 113
= s e 00D 113)

whereE,, Ey, Hy, andH, are plane-wave solutions in Egs. (20)—(22) and

D(p,¢,2) = —0,(0)V1—nZcos¢ — ¢o) — 02(2)NZ (114)

is the decay factor. Let the vacuum—layer interface he-aipy and|z| = zy. We require that
o,(p)=0for p < pg ando,(z) = 0 for |z| < zy in order for the decaying plane-waves in the
PML to match incident plane-waves perfectly. Following the considerations of the absorb
and reflectionless properties of the polar PML methgdp) ando,(z) must satisfy the
same conditions as those in the Egs. (65)—(66). Thus, the solutions are perfectly mat
with the free-space plane-wave solutions. One can easily see that the above plane-
solutions are uniformly bounded like those in Cartesian and spherical coordinate syste

To get a set of equations that admit the above solutions, we add complementary so
terms to the original Maxwell’'s equations. The evolution of these source terms is gover:
by ordinary differential equations. Let us denote

Bi, =0, (p), Bi,=0}(2). (115)
We then have the following system of equations for the cylindrical PML:

)=
- (ag<z> +

a"/()p) - o;(p)) E,+ (Gp[()p) - U;J(p)) (02(2) — 0, (0)) Pe

19H, oaHs _.
== - —% _Bi,T 116
p a¢ az z!H> ( )
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& + (O'Z/(Z) +(T//)(,0) _ Up(p)> Ep + (O'//)(,O) _ Gp(p)> <O’Z,(Z) _ Gp(p)> QE
ot P o o

_9H, 9H,
Y. ap

+ Bi,Uy — Bi,Vy, (117)

Up(p) _

IE, | (0,(p)

o
dH, 19H, H, _.

= + — + Bi,Wy, 118

p p AP p poH (118)

+0,(p) — o;<z)> E.+ (0,(p) — 0}(2)) ( oz’<z>> Re

and the supplementary ordinary differential equations are given as

% = Ep —a,(p)Pe, (119)
T - e (120
L (121)
% = Ay — oL@ Th. (122)
8%‘* =H, — 0,(2)Un, (123)
e (124)
a\alf“ = Hy — 0, (0)Wh. (125)

Note that the system of equations is symmetric hyperbolic and, hence, strongly well-pc
The supplementary fields are similar to those in the spherical case in formulation and c:
obtained without much difficulty. As in the Cartesian case, we can reduce the biaxial F
to the uniaxial PML by settin@®i, andBi, to be zero or by choosing a linear loss profile
in the layer. The@y, Uy, Vi, andWy are not needed in the PDE. Hence, in that case, v
do not need to solve Egs. (122)—(125), and that makes the uniaxial PML computatior
less expensive.

5. NUMERICAL EXPERIMENTS

The numerical method we use is a multidomain Chebyshev pseudospectral schem
a pseudospectral scheme is infinite-order accurate for smooth solutions, we expect
be the best underlying scheme for the testing of PMLSs. In testing the PMLs we want
numerical reflection due to the PMLs, which is very small, to be fully manifested in t
error of numerical solutions.

The computational domain is decomposed into two layers of subdomains. The P
being considered are set up in the outer layer to terminate the computational dom
Detailed description of the 3D multidomain spectral scheme does not fit in here anc
hope to report on it in the near future.
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5.1. Simulations with the Spherical PML Methods

To test the spherical PML methods, we first apply them in the simulation of a moc
problem for which the exact solution is known. The problem is the same as that in [1
where an off-centered radiating electric dipole locate&fkat0, 0, zy), Zp > 0, is considered.
Its time dependence is a Gaussian pulse centereg-dg [19].

Unlike [19], we simulate the problem in 3D to test the spherical PML methods, althou
the computational region can be reduced to a 2D region due to inherent symmetry. We
compose the computational domain into 48 subdomains, where the computational mes
use in each subdomain is ¥212 x 12. Half of the subdomains are in the outer layer, i.e., ir
the PML. The inner boundary of the computational domain is-a0.5[m], while the PML
layers start at = 1.0[m]. We setzo = 0.4[m] in our simulations. We shall compare the nu-
merical solutions with the exact solutions at three different locations well inside the com|
tational domain:Py(6 =45°, ¢ =0°,r =0.75[m]), P,(6 =90°, ¢ =0°,r =0.75[m]), and
P30 =180, ¢ =0°,r =0.75[m)).

In Fig. 1, we plot thep-component of the magnetic field versus time at the location
P; and P,, computed with the split-field spherical PML method, on top of the exact s
lutions. The numerical errors at the two locations are very small. After the pulse pas:
the maximum residual amplitude is only 0.1% of the exact solutions approximately. N¢

P1 P2

2 1

il os| N

0 0

» -05

-2 -1
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x107° x107°
Error at P1 Error at P2

0.03 0.005

0.02 o—~\A
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0 -0.01
-0.01 -0.015
-0.02 ~0.02
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-0.04 -0.03

0 05 1 15 2 25 0 05 1 15 2 25

x107° x 107

FIG. 1. The numerical solution oH? at P, and P, (dashed lines), computed using the split-field spherical
PML method, is compared with the exact solution (solid line).
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FIG. 2. The numerical solution oH? at P; (dashed line), computed using the split-field spherical PML
method, is compared with the exact solution (solid line).

that when the pulse passes the location, there is no reflection coming from the bour
since the wave has not yet reached the PML region. The error at that stage is solely
to the discretization error of the sharp pulse. In Fig. 2, we plot¢ttmponent of the
magnetic field at poinP;, computed with the same method, on top of the exact sol
tion which is zero atP;. One notes that the error is as low ast:0 15, which strongly
suggests that reflections are absorbed locally and do not contaminate the solution
where.

In Fig. 3, we plot thep-component of the magnetic field versus time at the locati®yns
and P,, computed with the uniaxial spherical PML method, on top of the exact solutio
One notes that the reflection of the PML is also very small, less than 0.1% of the e
solution. Theg-component of the magnetic field at poiRt, computed with the same
method, is also extremely small like in Fig. 2, which strongly suggests that the numel
error is absorbed locally and does not contaminate the solution elsewhere.

In Fig. 4, we plot thep-component of the magnetic field versus time at the locati®ns
and P,, computed with the biaxial spherical PML method, on top of the exact solutio
One notes that the reflection from the PML is again very small, less than 0.1% of
exact solution. The-component of the magnetic field at polPy, computed with the same
method, is also extremely small like in Fig. 2, which strongly suggests that the numer
error is absorbed locally and does not contaminate the solution elsewhere.
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FIG. 3. The numerical solution oH? at P, and P, (dashed lines), computed using the uniaxial spherical
PML method, is compared with the exact solution (solid line).

In Fig. 5, we compare the error history of different spherical PML methods. The discr
L, error is computed on all the grid points in the inner subdomain and plotted versus ti
with the field normalized. Numerical results show that the accuracy of the three types
PML methods are very close.

Finally, in Fig. 6 we compare the split-field and the uniaxial PMLs for a dipole whos
amplitude as a function of time is a smoothed step function, i.e., for a source with signific
o = 0 frequency content. As expected, both methods fail for this case; however, the ove
error history of the uniaxial PML is much better than that of the split-field PML. Th
latter is better at an early stage but diverges eventually. It appears that the underl
problem with the two methods is different. The result of the biaxial PML, which is clos
to, but not as good as, that of the uniaxial PML, is omitted here. One unsolved probl
with biaxial PML in time domain is that whew =0, supplementary fields such &y
and Ry are unbounded at the vacuum-layer interfaeery. However, the biaxial PML
does not have this problem in frequency domain and the situation should be differen
frequency domain. In the constant profile case, the time-domain uniaxial PML method
propose only needs supplementary fieltls and De that are uniformly bounded. Indeed,
all fields are bounded in this case. These issues are currently under investigation. Note
the simulation time in this test is an order of magnitude larger than that of the previc
tests.
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FIG. 4. The numerical solution ofi® at P, andP, (dashed lines), computed using the biaxial spherical PMI
method, is compared with the exact solution (solid line).

We have also simulated scattering by a PEC sphere. In this simulation, we use
subdomains, and in each subdomain a1 x 16 grid is used. The split-field PML, the
biaxial PML, and the uniaxial PML methods were all used to truncate the simulation,
the Mie-series result was taken as the RCS reference. To determine the size of the refle
of the perfectly matched layers, we also compare the computed fields to those comy
using a larger computational domain.

In Fig. 7 we present the RCS result of scattering by a PEC sphere of electrical
ka=>5.3, with the Mie-series RCS result as the reference. Here we use the multidon
pseudospectral method with the split-field, uniaxial, and biaxial spherical PMLs. All thi
approaches give very accurate results, within 0.01-0.02 db of the exact one. The re
from all the methods are again very close.

In Fig. 8 we plot, versus time, thEy field »/2 from the scatterer surface in the bacl
scatter region, and the difference between the field and the one obtained in the r
ence computation using a larger computational domain. It is shown in the figure that
difference between the two fields is withinx110~3 after the initial noise, which is the
result of the initial nonsmoothness of the type of excitation used. Due to resource
strictions, we could not run this test for a longer time. However, our 2D tests in [3,
suggest that the reflection of PML methods remain this low even after a much lor
time.
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FIG. 5. History of the normalized discrete, error of the split-field spherical PML (dash-dotted line), the
uniaxial spherical PML (dashed line), and the biaxial spherical PML (solid line).

5.2. Simulations with the Cylindrical PML Methods

The cylindrical PML methods are similar in nature to the polar PML methods in 2D ar
the spherical PML methods in 3D. Hence, we shall only simulate electromagnetic scatte
by a finite-height perfectly conducting cylinder to validate our methods. For reference,
scanned and measured the MOM results in [18].

In Fig. 9 we present the RCS result of a finite PEC cylinder of radiuarl height 2.
Our result is obtained with the multidomain pseudospectral method using the split-fi
cylindrical perfectly matched layer as the absorbing boundary condition. We employ t
layers of subdomains to surround the cylinder, with 18 subdomains in each layer.
usual, a cylindrical PML is put in the outer layer. In each subdomain, the computatiol
grid used is 16< 16 x 16. Note that the numerical result is in good agreement with th
reference.

We also run the same problem with the uniaxial and biaxial cylindrical PMLs as tl
absorbing boundary conditions. Similarly to the split-field cylindrical PML case, the:
numerical results were in good agreement with the reference. Due to the fact that
uniaxial cylindrical PML method requires a smaller number of additional equations
solve than the biaxial cylindrical PML method, the uniaxial cylindrical PML seems to be
better choice for high-frequency problems.
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Field at P1 (- : Exact; —— : Split-Field PML; . : Uniaxial PML)
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FIG. 6. The numerical solution o, at P, computed using the split-field (dash) and uniaxial (dot) spheric:
PML methods, is compared with the exact solution (solid line), and the normalized disgester of the split-field
spherical PML (dash) is compared with that of the uniaxial spherical PML (dot).

6. CONCLUDING REMARKS

In this paper, three types of PML methods are discussed and compared, i.e. the split-
the biaxial, and the uniaxial PML methods.

The proposed split-field spherical PML has the property of admitting plane-wave s
tions that decay in all directions of propagation. The biaxial PML we propose differs fr
other anisotropic PMLs in that it is shown to admit plane-wave solutions that are unifort
bounded while the fields in the layer decay exponentially independently of the freque
However, we also show that the uniaxial PML admits uniformly bounded plane-wave s
tions when the PML is constant, and the uniaxial PML needs less supplementary eque
than the biaxial PML does. For both the biaxial and the uniaxial PML methods, we pre:
here the time-domain equations that have the important property of being symmetric
perbolic, from which well-posedness follows. The reduction from the biaxial PML into t
uniaxial PML can actually be controlled by a switch.

All the PML methods are demonstrated to be effective in numerical experiments
they give very similar numerical results. Reflection from the PMLs is as low as 0.1%
the amplitude of the wave. A detailed presentation of the 3D multidomain spectral met
we use and the implementation details of the PML methods, which have a big influenc
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RCS of PEC Sphere of Electrical Size ka=5.3
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FIG. 7. Plots of RCS’s obtained from the pseudospectral method with the split-field spherical PML (dast
line), the uniaxial spherical PML (dash-dotted line), and the biaxial spherical PML (dotted line) on top of t
Mie-series RCS (solid line), for a PEC sphere of electrical kize: 5.3.
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FIG. 8. Comparison of field obtained from spectral method with split-field spherical PML, dashed line, a
reference, solid line, for a PEC sphere with electrical kize- 5.3.
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FIG. 9. Comparison of RCS’s obtained from spectral method with cylindrical PML, solid line, and refe
ence, marked by for a PEC cylinder of radius 2 and height 2, horizontal polarizationE™ =6 - E,,
Ginc — 7'[/4, ¢inc — 7.[/2’ ¢obs: 7.[/3)

the results, have to be omitted herein for conciseness, and we hope to report on them
near future.

Due to the fact that the uniaxial medium PML's time-domain equations is symme
hyperbolic and has the smallest number of equations, it is the most efficient one to
What remains to be studied is the boundness of the plane-wave solutions when the P
not constant.
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